
KSME International Journal, Vol. 12, No. 6, pp. 1073--1078, 1998 

Periodic Response and Nonlinear Vibration 
Behavior for Automotive Clutch 

1073 

Young Bae Kim* and Hyeong Bok Lee** 
(Received January 20, 1998) 

Modif ied H B M ( H a r m o n i c  Balance Method)  with A F T ( A l t e r n a t i n g  Frequency Time) 

method is util ized to obta in  s teady-s ta te  response of  an automot ive  clutch system with piecewise 

- l inear  stiffness. The stabi l i ty  analysis for the ob ta ined  response is performed via a per tu rba t ion  

technique and F loque t  multipliers.  The considered system shows a flip and fold bifurcat ion,  and 

var ia t ion of  system parameters  can exhibit  abnormal  clutch vibrat ion such as a rat t l ing phenom- 

enon. 
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N o m e n c l a t u r e  clutch 
TE 

C : Viscous damping  y 

hi, ]% : N on-d imen s io n  1st, 2nd stage angle a 

of  drive side ~,  r 

I : Equivalent  mass moment  of  inert ia  of  c~ 

A and I2 ~" 
/ ,  : Equivalent  mass moment  of  inert ia of  ~7, z11 

flywheel, clutch cover, crank shaft, 0 

connect ing rod 01, 02 

-/2 : Equivalent  mass moment  of  inert ia of  2~ 

input gear and clutch hub u 

K : Tors ional  spring stiffness of  K~ and o" 

/(2 CO, (01 
/(1 : Tors iona l  spring stiffness of  clutch pre 

damper  

K2 : T o r s i o n a l  spring stiffness of  clutch 

main damper  

q : Diffrence angle between 0~ and 02 

q,, qz : 1st , 2nd stage angle of  drive line 

O,, : Harmonic  componen t  

r : Crank radius 

t : Time 
T : Combined  torque per one cyl inder  

Tc : Tors ional  torque of  clutch 

Tc* : Nond imens iona l  tors ional  torque of  
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: Engine f luctuat ion 

: Nond imens iona l  d isplacement  

: Nond imens iona l  viscous damping  

: Nond imens iona l  equivalent  stiffness 

: Nond imens iona l  gap 

: Nond imens iona l  damping  

: Nond imens iona l  frequency 

: Nond imens iona l  t ime 

: Angle  

: Eigenvalue 

: Subharmonic  rat io 

: Stiffness ratio 

: Angula r  velocity 

1. Introduction 

Recent au tomot ive  power  train system requires 

more compact  design and higher efficiency as well 

as better r ide comfortness.  To satisfy above objec- 

tives the detai led clutch system analysis  involving 

the characterist ics of p iecewise- l inear  nonl inear-  

ity is important .  The inherent nonl inear  system 

has shown non- regu la r  type vibrat ion and noise 

such as rat t l ing and hammer ing  phenomena,  

which can not be predicted or analyzed by l inear 

v ibra t ion  theory. 
The hardening type spr ing characterist ics  has 

been widely known as a main cause of  the abnor-  
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mal clutch vibration (Ohnum, et al. , 1985). 

Generally the clutch vibration cannot be confined 

into the clutch system itself. This abnormal clutch 

vibration such as a rattle can cause driveline 

impact and whole automotive vibration since it is 

transmitted as an external input through gearbox' 

s bearing (Shahin, 1984 ; Hedges, et al. , 1979). 

A torsional character of a clutch can be re- 

presented by a hardening type or piecewise-linear 

type spring element (Kim, Noah, 1996). The 

important characteristics of this nonlinear system 

can be summarized as i) jump phenomenon, ii) 

abnormal vibration such as subsynchronous or 

supersynchronous vibration, iii) aperiodic vibra- 

tion, and iv) chaotic vibration. All these non- 

linear responses might have close relationships 

with rattling and hammering characteristics of an 

automotive clutch. 

An experimental analysis of a piecewise linear 

type clutch was performed and reported by Vers- 

choore, (1991). He combined all the power train 

components '  models, which were obtained by 

experimental works, and used numerical integra- 

tion to analyze the nonlinear system behavior. 

However, he could not perform stability analysis, 

which might explain the cause of abnormal power 

train's vibration. Meanwhile, Stuhler used clutch 

and universal joint  model in order to study reso- 

nance and instability problem (Stuhler, 1991). He 

also did not mention the stability characteristics 

for the system. Pardon et al. (1979) developed a 

software with which vibration and noise predic- 

tion of a drive system is possible. They also 

obtained the optimization condition for the given 

drive system using Monte Carlo method. How- 

ever, they also have drawbacks not accounting for 

nonlinear characteristics. Padmanabhan et al. 

(1992, 1995) used a FPA(F ixed  Point Algorith- 

m) method to locate the possible solution for a 

piecewise-linear aulomotive clutch model and 

performed a stability analysis for the given sys- 

tem. Although their research is quite encouraging 

in this area, a FPA method they utilized inherent- 

ly involves an accuracy problem unless adequate 

interpolation method is chosen (Kim, 1996). 

In this paper, HBM(Harmonic  Balance 

Method) with A F T ( A l t e r n a t i n g  Frequency 

Time) approach is used for the analysis of a 

piecewise-linear automotive clutch system and 

the corresponding stability analysis will be perfor- 

med to predict the possibility of abnormal vibra- 

tion by changing various clutch parameters such 

as stiffness ratio, gap ratio, damping and fre- 

quency ratio. 

2. Formulation and System Equation 

The clutch model is shown in Fig. 1, and 

equations of motion for the given system are 

represented as follows: 

IlOl= TE sin(oot) - - C (  t)~-- d2) Tc(q)  
/~ 02= C ( 0 , -  t~e) + Tc (q),  ( l .a)  

where clutch torque is expressed as follows: 

K2q + ( K 1 -  K,~) ql, - qz< q< - q~ 

T c ( q ) =  Klq, - q l ~ q < - q l  

K 2 q - ( K ~ - K 2 ) q , ,  q~<q<q2. 
(l. b) 

Fig. 1 The physical model. Fig. 2 Symmetric piecewise-linear torque. 
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In which, O~ is the angular displacement of 

flywheel, and 0e is the angular displacement of 

input gear. Also a superscript prime denotes 

differentiation wilh respecl to the time t. 

To study parameter effects for a given clutch 

system systematically, the following non dimen- 

sional parameters can be introduced. The non 

-dimensional time (0) is selected as a new 

independent variable as follows: 

uO = cot, (2) 

where u is a unit value for calculating harmonic 

vibration or super-harmonic vibration. Sub-har- 

monic vibration period will be u times of excita- 

tion. 

One can define the equivalent spring stiffness of 

[(1, t("2 as follows: 

4K~K2 (3. a) K =  ( , F ~ + , / ~ )  ~, 

Also one can define the equivalent moment of 

Inertia of It, I2 as follows: 

: =  -5I'~ - (3. b) 
L+I~ 

And equation (I) can be normalized as fol- 

lows: 

Y+aS~ + u2Tc* ( y ) = ~ z ~ i n ( u 0 ) .  (4) 

In above equations, all the definitions can be 

found in Appendix. 

Figure 3 shows a physical model of the clutch 

system with the equivalent 1 degree of freedom. 

The steady-state response of equation (4) can be 

obtained using Fourier series as follows: 

y (~)) = a0 + ~ (a~ cos n O -  b, Mn nO), (5) 
n = l  

where k represents the maximum harmonic 

term used to obtain steady-state solution. In the 

same fashion, nonlinear clutch torsional torque 

can be represenled as foilows: 

Fig. 3 Equivalent single degree of freedom model. 

k 
T~e (0) =Co+ Y~, (c,~ cos , i O - d , , s i n  ~0 ) ,  (6) 

n = l  

lr~ the above Eqs. (5) and (6), each coefficient is 

an unknown term to be determined. As the tor- 

sional torque is induced fiom nonlinear stiffness 

expressed as in appendix Eq. (A l), the coeffi- 

cients of  co, c~, d~, " ' ,  c'~, eL, are the function of 

a0, a~, b~, " ' ,  a,,, bn. By substituting Eqs. (5) and 

(6) into Eq. (4) and rearranging all the 

trigonometric terms, the following Eq. (7) can be 

obtained by the following matrix torm. 

[A] {X} = {L} + {g} (7) 

0 0 0 0 0 . . . 0  0 

0 I a 0 0 . . . 0  0 

0 o : - - 1 0  0 . . . 0  0 

0 0 0 4 2a , . ,O  0 
~ A ] =  0 0 0 2 a - 4 . , , 0  0 (7. a) 

: �9 . ; ; , , .  ; ; 

0 0 0 0 0 .-.k z ka 

O 0  0 0 O . . - k ~ - k  z 

{X}=-{ao&blaab2..,a~,a~} r (7. b) 

( / } = = { ~ c 0 ~ ' ~ c l -  ~ d , ~  c :~ -  ~ ~ & " "  ~ c~ 
- Sd~} T (7, c) 

{g}={O 0 -- A'~O~ -- A' zh;...O-- Ci ty  trk2)r (7. d) 
w 7112 w ~,z 

;b= 01 ~=1 ,  2, --., k (7. e) 

As Eq. (6) is represented by the nonlinear 

terms, the Eq. (7) is automatically a nonlinear 

one. As the unknown coefficients of Eqs. (5) and 

(6) are coupled with the Eq. (AI) ,  both coeffi- 

cients can be determined by using AFT tech- 

nique. In order to apply AFT technique, the given 

harmonic components of the discrete dis- 

placement p,. with r'th discrete time can be 

obtained using IDFT(lnverse Discrete Fourier 

Transform) as: 

( ~, / 2 s 7- . 2snr'~].  t~. =Real{ ~, O, , l cos - !~  - -+ i sin ~ - - ] ] ,  
I ,n=0 \ 2'/ 

r :=0, l, ..., N -  1 (8) 

where Q, is the nth harmonic component, i.e., an 

+ ib,,. 
Nonlinear restoring torque term of the Eq, 

(A2) can be represented in discrete rime as 

in which 
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~2Pr+& P r < - h  
( 

s T : {  I~IPT,  - h < - P r < - h  (9) 
k 

~2P~--& P~>h 

The corresponding restoring torque in fre- 
quency domain can be obtained using DFT 
(Discrete Fourier Transform) as follows: 

= s r e  (--~-); 

1, n = 0  (10) 
g r=  2, n:t:0 

where R ,  represents for the nth harmonic compo- 
nents, i.e. c,  + id,. 

As Eq. (7) is a nonlinear algebraic one, the 
incremental unknown coefficients of d X  can be 
written using Newton-Raphaon method as 

[y]AX+G=O, (l l) 

[ 3G ] is a Jacobian matrix, and vector where j = ~ -  

G is obtained from Eq. (8). Where G is a vector 
with the dimension of ( 2 N +  1) • I. 

3. Stability Analysis 

One of important advantages of HBM with 
AFT is its ability to accommodate the criteria for 
bifurcation and stability conditions. To analyze 
the given nonlinear system response systemat- 
ically, one should determine the stability of the 
given periodic solution. This stability analysis is 
quite important in clutch system to study the 
parameter variation, which sometimes involves 
sudden vibration changes such as jumping, sub- 
syncronous, and supersyncronous vibration. To 

determine the stability information for the 
obtained periodic solution, eigenvalues of a 
monodromy matrix can be utilized. The stability 
analysis is based on the perturbation of obtained 
periodic solution. The perturbated equation for 
periodic response can be written as: 

A j;" + a, J3~ + u2P (r)  ,3y =0,  (12) 

where /3(r) is a discontinuous function whose 
value depends on the r ' th  discrete time. 

Equation (12) can be rewritten using the 1st 
order form as: 

[2]=[u(~o)][z], [ z (o) ]=U] .  (13) 

Eigen values of/h,  /12 for monodromy matrix [Z 
(u0) ] become Floquet multipliers, and have the 
following relation 

AI& = e-2~r (14) 

where T represents one period (T=2S) .  As the 
system parameter varies, the obtained response 
can be unstable as one of Floquet multipliers can 
leave the unit circle through three possible routes. 

4. Numerical Results and Discussion 

The steady-state response based on HBM, is 
compared with that of the numerical integration 
in Fig. 4. HBM could give an accurate steady 
-state response efficiently compared with analyti- 
cal or numerical methods. 

In this paper, the number of retained harmonic 
terms is chosen to be four considering 
computational time and accuracy. The steady 
-state response obtained by HBM was analyzed 

Fig. 4 Comparison HBM with Runge-Kutta. (a=10, ~=01, r/=l.5, 711=2.0, u=2, H=0.1, ~=0.15). 
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by discrete time method on data number needed 

to response of  27r period, which means u =  1. 

Steady-state response of 25 period for Runge 

-Kut ta  method is identical to the result of HBM. 

By changing various system parameters, for the 

given stable solution of uO period. 

One of the most interesting situation in piec- 

ewise-linear system is that it can sometimes have 

"jump phenomenon" (Stuhler, 1991). As the 

clutch system considered here has strong non- 

linear characteristic, jump phenomenon, which 

can be verified by the fact that one of Floquet 

multipliers leaves the unit circle via + I, might be 

possible and the result is plotted in Fig. 5. 

This is called fold bifurcation or saddle-node 

bifurcation. Figure 5 shows three different 

responses depend on the initial conditions. In this 

simulation, the system shows unstable and violent 

vibration. In Fig. 6, the flip bifurcation is found 

when one of Floquet multiplier leaves unit circle 

through - l .  Figure 6 shows non-dimensional  

displacement (y) versus non-dimensional  time 

(0) for the flip bifurcation case, and it shows 

unusual vibration. In the frequency domain, dom- 

inant peak at I /3 of  the forcing frequency appears 

in case of the flip bifurcation. These phenomena 

can make unstable vibration in automotive clutch. 

Fig. 7 represents stable-unstable curve of  non 

-dimensional  frequency (7) versus non-dimen- 

sional damping (~') change based on HBM ana- 

lyses. We can find more stable solution as we 

increase the damping (~') while keeping the fre- 

quency constant. 

5. Conclusion 

HBM with A F T  technique is adopted to obtain 

accurate steady-state responses of the nonlinear 

automotive clutch with a single excitation torque. 

For  the numerical computat ion of  clutch 

Fig. 5 Response depending on initial condition; 
solid line: 0.1, dashdot line: 0.2, dot line: 0.3 
(o'=10, ~'=0.15, z2=1.2, rj~=2.0, u:=2, H =  
0,08, c~--O, t 8) 

Fig. 7 Bifurcation on ~ '-r /  graph (a=10, u=2,  H 
=0.1, a=0.]5)  

Fig. 6 Flip bifurcation [ T -+ 3 T] (6 = 10, ~'=0.6, r/=2.7, rk =2.0, u=2, H=0.1,  #=:0.15). 
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response, four discrete harmonic terms were util- 
ized considering numerical efficiency as well as 
computational accuracy. 

Stability of the obtained response is analyzed 
using bifurcation approach. Response based on 
HBM is compared with that from numerical inte- 
gration with Runge Kutta method. Two results 
show good agreement. The system shows flip and 
fold bifurcation, which have a strong relationship 
with the clutch rattle. One could conclude that 
HBM is advantageous in predicting unstable 
clutch vibration through its stability criteria. 

This method can be applied to the clutch sys- 
tem with hysterisis. More generally, This method 
can be extended to study multi-degree of freedom 
and multi-dimensional nonlinear system with 
nonlinear vibration phenomena. 
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All definitions used in Eq. (4) are as follows: 

t t~2y+~ { - - h z < y < - - l h  
T* (y) = ~ y  -h~<_y<_-h, (AI) 

/~2y--~ - h l < y < - h 2  
K y = ~ q  = 0~- 02 (A2) 

(/)rt = ~ ,  0)1 = ~/f ~@ (A3) 

(.0 (1) ~=~-, ~=~- (A4) 

C 2u~ (A5) 
~=2Iw'  a= ~7 
a =  (K2--K1) ql 

vZTu (A6) 

K K - - - -  hz=~-E q2 (A7) h i -  TE ql, 

/~'z (A8) o" =-/.s 

in which the dot indicates a differentiation with 
respect to non-dimensional time r. 


