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Periodic Response and Nonlinear Vibration
Behavior for Automotive Clutch

Young Bae Kim* and Hyeong Bok Lee**
(Received January 20, 1998)

Modified HBM (Harmonic Balance Method) with AFT (Alternating Frequency Time)
method is utilized to obtain steady-state response of an automotive clutch system with piecewise
-linear stiffness. The stability analysis for the obtained response is performed via a perturbation
technique and Floquet multipliers. The considered system shows a flip and fold bifurcation, and
variation of system parameters can exhibit abnormal clutch vibration such as a rattling phenom-

enon.
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Nomenclature

C . Viscous damping

h, B : Non-dimension Ist, 2nd stage angle
of drive side

I . Equivalent mass moment of inertia of
I and ],

A . Equivalent mass moment of inertia of
flywheel, clutch cover, crank shaft,
connecting rod

L : Equivalent mass moment of inertia of
input gear and clutch hub

K : Torsional spring stiffness of K; and
K

K : Torsional spring stiffness of clutch pre
damper

K : Torsional spring stiffness of clutch
main damper

q . Diffrence angle between 4, and 4,

a4z > Ist, 2nd stage angle of drive line

Qnr : Harmonic component

7 : Crank radius

t : Time

T : Combined torque per one cylinder

Tc : Torsional torque of clutch

Tc* : Nondimensional torsional torque of
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Rattle, Bifurcation, Stability, Perturbation, Discrete Fourier Transforms, Auto-

clutch

Te : Engine fluctuation

y . Nondimensional displacement

a : Nondimensional viscous damping
8, B2 : Nondimensional equivalent stiffness
o) : Nondimensional gap

¢ : Nondimensional damping

7y T : Nondimensional frequency

) : Nondimensional time

61, o : Angle

A . Eigenvalue

y . Subharmonic ratio

o . Stiffness ratio

@, Wi . Angular velocity

1. Intreduction

Recent automotive power train system requires
more compact design and higher efficiency as well
as better ride comfortness. To satisfy above objec-
tives the detailed clutch system analysis involving
the characteristics of piecewise-linear nonlinear-
ity is important. The inherent nonlinear system
has shown non-regular type vibration and noise
such as rattling and hammering phenomena,
which can not be predicted or analyzed by linear
vibration theory.

The hardening type spring characteristics has
been widely known as a main cause of the abnor-
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mal clutch vibration (Ohnum, et al. , 1985).
Generally the clutch vibration cannot be confined
into the clutch system itself. This abnormal clutch
vibration such as a rattle can cause driveline
impact and whole automotive vibration since it is
transmitted as an external input through gearbox’
s bearing (Shahin, (984 ; Hedges, et al. , 1979).

A torsional character of a clutch can be re-
presented by a hardening type or piecewise-linear
type spring element (Kim, Noah, [996). The
important characteristics of this nonlinear system
can be summarized as i) jump phenomenon, ii)
abnormal vibration such as subsynchronous or
supersynchronous vibration, iii) aperiodic vibra-
tion, and iv) chaotic vibration. All these non-
linear responses might have close relationships
with rattling and hammering characteristics of an
automotive clutch.

An experimental analysis of a piecewise-linear
type clutch was performed and reported by Vers-
choore, (1991). He combined all the power train
components’ models, which were obtained by
experimental works, and used numerical integra-
tion to analyze the nonlinear system behavior.
However, he could not perform stability analysis,
which might explain the cause of abnormal power
train’s vibration. Meanwhile, Stuhler used clutch
and universal joint model in order to study reso-
nance and instability problem (Stuhler, 1991). He
also did not mention the stability characteristics
for the system. Pardon et al. (1979) developed a
software with which vibration and noise predic-
tion of a drive system is possible. They also
obtained the optimization condition for the given
drive system using Monte Carlo method. How-
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Fig. 1 The physical model.

ever, they also have drawbacks not accounting for
nonlinear characteristics. Padmanabhan et al.
(1992, 1995) used a FPA (Fixed Point Algorith-
m) method to locate the possible solution for a
piecewise~linear automotive clutch model and
performed a stability analysis for the given sys-
tem. Although their research is quite encouraging
in this area, a FPA method they utilized inherent-
ly involves an accuracy problem unless adequate
interpolation method is chosen (Kim, 1996).

In this paper, HBM (Harmonic Balance
Method) with AFT (Alternating Frequency
Time) approach is used for the analysis of a
piecewise-linear automotive clutch system and
the corresponding stability analysis will be perfor-
med to predict the possibility of abnormal vibra-
tion by changing various clutch parameters such
as stiffness ratio, gap ratio, damping and fre-
quency ratio.

2. Formulation and System Equation

The clutch model is shown in Fig. 1, and
equations of motion for the given system are
represented as follows:

L= Te sin(wt) — C(H,— 92)*7‘0(0)

[26.2:C(0‘1_0'2)+TC(4)5 (La)

where clutch torque is expressed as follows:

Keg+ (KK gy, —@:<q<-—aq
Tc(q):{Klq, eI
qu* (Kl*Kz) q1, C]1<£I<C]2~
(1. b)

q1 q2

Fig. 2 Symmetric piecewise-linear torque.
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In which, g, is the angular displacement of
flywheel, and ¢, is the angular displacement of
input gear. Alsc a superscript prime denotes
differentiation with respect 1o the time ;.

To study parameter effects for a given clutch
system systematically, the following non-dimen-
sional parameters can be introduced. The non
-dimensional time (@) is selected as a new
independent variable as follows:

vl = wt, (2)
where  is a unit value for calculating harmonic
vibration or super-harmonic vibration. Sub-har-
monic vibration period will be p times of excita-
tion.

One can define the equivalent spring stiffness of
K., K as follows:

K KK
(VK +/K2)?

Also one can define the equivalent moment of

(3. a)

Inertia of [, [, as follows:
__ DIt
=7+ (3-0)

And equation (1) can be normalized as fol-
lows:

2
ji+a;')+v2Tc*(y):—:;;—2-sin(z/0)~ €5

In above equations, all the defimtions can be
found in Appendix.

Figure 3 shows a physical model of the clutch
system with the equivalent 1 degree of freedom.
The steady-state response of equation (4) can be
obtained using Fourier series as follows:

y(@) :ao+n§3(dn cos nf—bnsin nd), (5)

where k represents the maximum harmonic
term used to obtain steady-state solution. In the
same fashion, nonlinear clutch torsional torque
can be represenied as follows:

TZ\’- O o U™

Fig. 3 Equivalent single degree of freedom model.

TE(0) =cot g(cn cos n0 — dysin nd).  (6)

In the above Egs. {5} and (6), each coefficient is
an unknown term to be determined. As the tor-
sional torque is induced from nonlinear stiffness
expressed as in appendix Eg. (Al), the coeffi-
cients of ¢4 1. i, s Cne dn are the function of
ao> ais by -+« an. by By substituting Eqs. (5) and
(6) into Eq. (4) and
trigonometric terms, the following Eq. (7) can be

rearranging all the

obtained by the following matrix form.
[ARXY={L}+1{g} @)
in which

r00 6 0 0--0
01 ¢ 000
0g—10 0.0
000 4240

0

7. .
00 0254 7-8)

o O O o o

00000 4 ke
LO 0000 '~-,{'a~k2j
{)(}::{do(llbl(lzbz"'(lkflk}r (7. b)
{FY={vicovici—vidivico— videvick
AT (7. ¢)
(te1=loo —¢—?;—220» 175;---0—»¢sly1;}r (7. d)
1

s VT

¢:{0’ o (7. ¢)

btz s

As Eq. (6) is represented by the nonlinear
terms, the Eq. (7) is automatically a nonlinear
one. As the unknown coefficients of Eqs. (5) and
(6) are coupled with the Eq. (Al), both coeffi-
cients can be determined by using AFT tech-
nique. In order to apply AFT technique, the given
harmonic components of the discrete dis-
placement P, with r'th discrete time can be
obtained using IDFT (Inverse Discrete Fourier

Transform) as:

P ’—“—Real{’an<cos-2%z'--+ 7sin 25;\4/,» >]

-=0, |, -~y N—1 (8)
where (), is the nth harmonic component, i.e., g,
+ by

Nonlinear restoring torque term of the Egq.
(A2) can be represented in discrete time as
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BePr+8, Pr<—h
Sr=1 B Pr, —h<P.<h )
BePr—8, Pr>h
The corresponding restoring torque in fre-
quency domain can be obtained using DFT
(Discrete Fourier Transform) as follows:

Rn:%gosre"("zny);
1, n=0

10
2, n=+0 (10)

v
where R, represents for the nth harmonic compo-
nents, 1.e. ¢, idxy-

As Eq. (7) is a nonlinear algebraic one, the
incremental unknown coefficients of 4X can be
written using Newton-Raphson method as

/14X +G=0, (1
—[9G s i i
where J= x| s Jacobian matrix, and vector

G is obtained from Eq. (8). Where G is a vector
with the dimension of 2N +1) X 1.

3. Stability Analysis

One of important advantages of HBM with
AFT is its ability to accommodate the criteria for
bifurcation and stability conditions. To analyze
the given nonlinear system response systemat-
ically, one should determine the stability of the
given periodic solution. This stability analysis is
quite important in clutch system to study the
parameter variation, which sometimes involves
sudden vibration changes such as jumping, sub-
syncronous, and supersyncronous vibration. To
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determine the stability information for the
obtained periodic solution, eigenvalues of a
monodromy matrix can be utilized. The stability
analysis is based on the perturbation of obtained
periodic solution. The perturbated equation for

periodic response can be written as:
45 +ady +v*B(r) dy =0, (12)

where A(#) is a discontinuous function whose
value depends on the »’#; discrete time.

Equation (12) can be rewritten using the Ist
order form as:

[Z1=[u(w®)](Z]. [Z(©]=[I]. (13)

Eigen values of A;, A; for monodromy matrix [ Z
(v6)] become Floquet multipliers, and have the
following relation

Adg=e™2T (14)

where 7 represents one period (7 =2%. As the
system parameter varies, the obtained response
can be unstable as one of Floquet multipliers can
leave the unit circle through three possible routes.

4. Numerical Results and Discussion

The steady-state response based on HBM, is
compared with that of the numerical integration
in Fig. 4. HBM could give an accurate steady
-state response efficiently compared with analyti-
cal or numerical methods.

In this paper, the number of retained harmonic
chosen to be four
computational time and accuracy. The steady
-state response obtained by HBM was analyzed
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Fig. 4 Comparison HBM with Runge-Kutta. (=10, ¢=01, p=1.5, 5,=2.0, y=2, H=0.1, §=0.15).
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by discrete time method on data number needed
to response of 27 period, which means py=1.

Steady-state response of 25 period for Runge
-Kutta method is identical to the result of HBM.
By changing various system parameters, for the
given stable solution of y@ period.

Orne of the most interesting situation in piec-
ewise-linear system is that it can sometimes have
“jump phenomenon” (Stuhler, 1991). As the
clutch system considered here has strong non-
linear characteristic, jump phenomenon, which
can be verified by the fact that one of Floquet
multipliers leaves the unit circle via + 1, might be
possible and the result is plotted in Fig. 5.

This is called fold bifurcation or saddle-node
three different
responses depend on the initial conditions. In this

bifurcation. Figure 5 shows
simulation, the system shows unstable and violent
vibration. In Fig. 6, the flip bifurcation is found
when one of Floguet multiplier leaves unit circle
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Fig. 5 Response depending on initial condition;
solid line: 0.1, dashdot line: 0.2, dot line: 0.3
(6=10, £=0.15, y=12, =20, y=2, H=
0.08, §=0.18)
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Fig. 6 Flip bifurcation [ 7°— 3T ] (¢=10,

through -1. Figure 6 shows non-dimensional
displacement (y) versus non-dimensional time
(@) for the flip bifurcation case, and it shows
unusual vibration. In the frequency domain, dom-
inant peak at 1/3 of the forcing frequency appears
in case of the flip bifurcation. These phenomena
can make unstable vibration in automotive clutch.

Fig. 7 represents stable-unstable curve of non
-dimensional frequency (7) versus non-dimen-
sional damping (¢) change based on HBM ana-
lyses. We can find more stable solution as we
increase the damping (&) while keeping the fre-
quency constant.

5. Conclusion
HBM with AFT technique is adopted to obtain
accurate steady-state responses of the nonlinear
automotive clutch with a single excitation torque.

For the numerical computation of clutch
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£=06, p=2.7, 5=20, y=2, H=0.1, §=0.15).
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response, four discrete harmonic terms were util-
ized considering numerical efficiency as well as
computational accuracy.

Stability of the obtained response is analyzed
using bifurcation approach. Response based on
HBM is compared with that from numerical inte-
gration with Runge-Kutta method. Two results
show good agreement. The system shows flip and
fold bifurcation, which have a strong relationship
with the clutch rattle. One could conclude that
HBM is advantageous in predicting unstable
clutch vibration through its stability criteria.

This method can be applied to the clutch sys-
tem with hysterisis. More generally, This method
can be extended to study multi-degree of freedom
and multi-dimensional nonlinear system with
nonlinear vibration phenomena.
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Appendis

All definitions used in Eq. (4) are as follows:

By +S  —h<y<—h
Tc*(y):{ﬂly —hléyé—hl (Al)
Boy—38  —h<y<—h,
K, A2
y‘TECI-@l‘ez ( )
o=, w= & (A3)
= = (A4)

. 2
tmrr a=2 (AS)
_ (KZ-KI) 75
S*M—W (A6)
hlZTLEQD hz:'%“QZ (A7)
_K
=" (A8)
(VoY L _(1+Va Y
,6’1—< 205)%—( % ) (A9)

in which the dot indicates a differentiation with
respect to non-dimensional time .



